Hitachi Elevator

" f - VFI-II

VFI-II

The VFI elevator has been reborn with the latest and most reliable Hitachi technology for a sustainable environment.
The new VFI-II elevator serves as an environmentally friendly transportation system to your building in addition to being reliable, safe, comfortable, of high quality and user-friendly.

d Energy conservation

A gearless traction machine with Permanent Magnet-type synchronous motor (PM motor) conserves energy by improving power efficiency.
A PM motor is also used in the drive unit for car doors and a direct drive method is employed to realize improved energy efficiency and smoother door opening and closing motions.

Gearless traction machine with PM motor

§ Energy-saving features

\int Automatic dimming of indication light The brightness of the elevator hall and car position indicator is dimmed automatically after a preset duration when elevator is idle
\int Automatic turn-off of car lighting and fan In the event that the elevator is idle, the lighting and ventilation fan in the elevator are automatically turned off to conserve energy.

Hall and car buttons using LED ligh Hall and car buttons utilize LED light which consumes less energy
Hall lanterns using LED light (optional) Hall lanterns using LED light are available for your selection.

PM motor with VVVF door control
\int Regenerative system (optional) Making use of the energy generated by an elevator when traveling downwards with a heavy car load or upwards with alightcar load, the tractionmachine acts as a power generator to transmit power back to the electrical network in the building
\int Energy saving operation control (applicable to FI -600 group control only) As one of the standard functions of the $\mathrm{Fl}-600$ group control system. The operation reduces energy consumption of elevators by forecasting the traveling routes and occupancy rate of elevators during low traffic

§ Space-saving design

The VFI-II elevator requires a smaller machine room size through the use of slimmer traction machine, control panel and machine room equipment. This allows flexibility in building design through maximizing the usage of building space

』The human touch

The VFI-II elevator provides a comfortable ride and appeals to different aspects of the human sense, touch, sight and hearing - by the integration of tactile button,TFT(LCD) display voice synthesizer and multi-beam door sensor.
Floor button flashing function:
The registered car destination floor button flashes when the car approaches the destination floor
The human touch: Multi-beam door sensor
Intton with Braille and tactile,
Ine the event where the beam paths are obstructed, this sensor, installed on the edge of the doors, will keep
Hearing: Voice synthesizer (optional)
Preset standard messages are announced to the passengers by a voice synthesizer.

$\boldsymbol{\downarrow}$ Standard Car and ceiling design

CS-101S Ceiling design

Center : Milky white acrylic
$\begin{array}{ll}\text { Center } & \text { : Milky white acrylic } \\ \text { Surrounding } & : \text { Painted sheet steel }\end{array}$
Surrounding : Painted sheet ste
Height (from floor): 2350 mm
Side and rear walls (3 sides)
Stainless steel hairline
ront return panel/ car door/ transom panel
Stainless steel hairline
Kickplate
Stainless steel hairline
Flooring
Vinyl tile
Door sill
Extruded hard aluminum
Car position indicator
TFT(LCD), incorporated into car operating panel
Ventilation
Air-blown through ceiling duct

OPE-15B Operating panel

Face plate Stainless steel hairline Button type All types available Indicator type TFT(LCD)

§Standard Entrance design

VIB-15B Hall button with indicator

Face plate Stainless steel hairline Button type All types available
Indicator type TFT(LCD)
$\frac{\square}{2}$

VIB-13B Hall button with indicator

Face plate Stainless steel hairline Button type All types available Indicator typ Dot matrix
VIB-13B

AS-1X Type Jamb

Jamb frame
Painted sheet steel, 50 mm wide
Door panel
Painted sheet steel
Door sill
Extruded hard aluminum

DHP-OP13 Operating panel

Face plate

Stainless steel hairline
Button type
All types available Indicator type Dot matrix

\varnothing Optional car and ceiling designs

Cars and ceilings

Side and rear walls (3 sides)
Stainless steel hairline
Front return panel/ car door/ transom panel Stainless steel hairline
Operating panel type
OPE-15B
Kickplate
Stainless steel hairline
Flooring
Vinyl tile
Door sill
Extruded hard aluminum
Car position indicator
TFT(LCD), incorporated into car operating panel Ventilation
Air-blown through ceiling duct

DX-201S Ceiling design
Center
: Painted sheet steel $\begin{array}{ll}\text { Both sides } & \text { : Milky white acrylic } \\ \text { Ceiling trim } & \text { : Anodized aluminum }\end{array}$ $\begin{array}{ll}\text { Ceiling trim } & : \text { Anodized alum } \\ \text { Lighting } & \text { : Fluorescent }\end{array}$ $\begin{array}{ll}\text { Lighting } & \text { Fluorescent } \\ \text { Height (from floor) } & : 2300 \mathrm{~mm}\end{array}$

DX-12S Ceiling design
Center
Both sides
Painted sheet steel Painted sheet steel
Painted aluminum with
$\begin{array}{ll} & \text { recess } \\ \text { Ceiling trim } & \text { : Anodized aluminum }\end{array}$ Lighting : Fluorescent
Height (from floor) : 2300mm

[^0]

Side and rear walls (3 sides)
Stainless steel hairline
Front return panel/ car door/ transom pane
Stainless steel hairline
Operating panel type
OPE-15B
Kickplate
Stainless steel hairline
Flooring
Vinyl tile
Door sill
Extruded hard aluminum
Car position indicator
TFT(LCD), incorporated into car operating panel Ventilation
Air-blown through ceiling duct

SL-102S Ceiling design
Upper portion : Painted sheet steel
Both sides : Painted sheet steel
Lighting : Fluorescent \&
Down light - Upper 2470 mm , Lower 2300 mm

EX-32S Ceiling design
(Applicable for car loading of 600 kg and above) Upper portion : Painted sheet steel Other portions : Painted sheet steel Lighting : Fluorescent Height (from floor) : Upper 2600mm, Lower 2300 mm

EX-403S Ceiling design
(Applicable for car loading of 600 kg and above) Center

Milky white acrylic
Center decoration : Painted sheet steel Surrounding : Painted sheet steel (with acrylic lens)
Lighting Fluorescent
Height (from floor) : Upper 2425mm, Lower 2300mm

§Optional Entrance designs

Entrances

Jamb frame
TL-2X (wide) type with transom panel, painted sheet steel

Door panels

Painted sheet steel
Landing sill
Extruded hard aluminum

Jamb frame
TS-1X (wide) type, painted sheet steel

Door panels
Painted sheet steel
Landing sill
Extruded hard aluminum

Jamb frame
SL-2X (wide) type stainless steel hairline

Door panels

Stainless steel hairline
Landing sill
Extruded hard aluminum

${ }^{2}$ Optional Car fixtures

Operating panels

Buttons (Applicable to both car and hall sides)

UB15S-4 and UB15R-4 buttons comply with barrier-free accessibility code of Singapore. Button light up colours : Red, White, Blue, Green and Yellow.

$\boldsymbol{\delta}$ Optional Entrance fixtures

Hall buttons with indicators

Hall buttons

Face plate:
Stainless steel hairline
Button type:
All types available

BL(UB15S-1)

Face plate:

 Stainless steel hairlineButton type: All types available

BL(UB15R-1)
Face plate: Stainless steel hairline

Button type:
All types available

Hall indicators

Hall lanterns

Vertical hall lantern
Face plate:
Stainless steel hairline

Vertical hall lantern Face plate: Stainless steel hairline

Vertical hall lantern Face plate: Stainless steel hairline

Horizontal hall lantern Face plate:

 Stainless steel hairline

Horizontal hall lantern

 Face plate:Stainless steel hairline

D Intelligent group control system

§ VFI-II comes with Hitachi's new group control system, FI-600 Shortening waiting times and reducing the probability of a long wait ${ }^{2}$ (2) are always the most critical concerns of group control systems.
Hitachi has been striving for the development of control algorithms to address these concerns. A new algorithm, "Future reference-trajectory control" is used for the Fl-600.
The probability of a long wait ${ }^{(2)}$ is minimized by operating elevator cars at equal time intervals while forecasting future trajectories.

Evolution of Hitachi's group control systems

(With our proprietary algorithm,"Future reference-trajectory control", changes in traffic demand are taken into account.
A future reference-trajectory control algorithm that forecasts the future trajectory of elevator cars is implemented in $\mathrm{Fl}-600$. $\mathrm{Fl}-600$ is a next-generation elevator group supervisory control system using advanced forecasting trajectory technique, by means of a high performance RISC* micro-controller and intelligent processing application technology.

Using this algorithm, you can determine and configure the optimum trajectory by taking into account not only the past and present usage data, but also the trend of future traffic demand. This allows the system to cope with the change in status flexibly and quickly, optimizing the allocation and operation of elevator cars for every user. -RISC: Stands for Reduced Instruction Set Computer. It is a micropprocessor
that implements high-speed operation with a smal number of simple

What is future reference-trajectory-control?

Generally speaking, a group of elevator cars must be operated at equal time intervals to minimize passenger waiting times, but in heavy traffic conditions, cars are frequently operated in a bunch, or all cars would end up clustering around the same level on their way and moving in the same direction in unison. In the conventional group control method, the most available cars at that moment are allocated to hall calls to eliminate local bunching, but when heavy traffic conditions are prolonged, this state cannot be completely eliminated, resulting in long waiting times In contrast, with future reference-trajectory control, elevator cars are controlled by taking into account their forecasted trajectories, allowing shorter passenger waiting times and reducing the probability of a long wait(-2).

(Major advantages of FI-600

The $\mathrm{Fl}-600$ controls the fluctuation in waiting times, thereby shortening the average waiting times, reducing the probability of a long wait ${ }^{(2)}$ during heavy traffic, and improving the "quality of waiting times" of users.

D Reduce average waiting time by as much as $10 \%^{(1)}$

』 Reduce probability of a long wait ${ }^{(2)}$ by up to $12 \%^{(1)}$

\downarrow FI series group control system

				Standard specification Optional specification - Not applicable		
				Fl series		
No.	Function		Description	600	100	10
1	Instantaneous reservation and service forecasting (FI-IRF)		Upon receipt of a hall call, this function activates an elevator to serve this call, and at the same time the call is acknowledged by the hall lantern and chime.	-	-	-
2	Arrival notice indication (FI-ANI)		Four to five seconds prior to the arrival of an elevator, this function will activate the hall lantern flickering and the chime sound.	-	-	\triangle
3	Basic call assignment control	Future referencetrajectory control (FI-FRTC)	Controls the allocation of elevator cars to hall calls according to the future reference trajectory resulting from learning-based daily traffic flows.	-	-	-
4		Referencetrajectory control (FI-RTC)	Controls the allocation of elevator cars to hall calls based on the theory used in the highest model in the FI series, $\mathrm{FI}-600$, and the intelligent-based data containing our know-how accumulated over a long period of time.	-	-	-
5		Ring control (FI-RC)	Allocates an elevator car closest to the floor where a new hall call is made.	-	-	-
6	Bunching prevention (FI-BP)		This function prevents local bunching of elevator cars using the "future reference-trajectory control" or the "reference trajectory control" for operating cars at equal time intervals.	-	-	-
7	Learning function	Collection of usage data (FI-CUD)	Collects the traffic status information by floor and direction for a unit time based on the elevator information such as car positions and the number of passengers getting on and off, and hall call information.	-	-	-
8		Recognition of traffic flow mode (FI-RTM)	Extracts characteristics at any given moment, including congested floors, from the collected usage data, and identifies the traffic flow mode at that moment.	$\underset{\substack{40 \\ \text { mode }}}{\bigcirc}$	$\underset{\text { mode }}{\bullet}$	-
9		Search for optimum operation program (FI-SOP)	Searches the optimum operation program of the moment based on the identified traffic mode.	-	-	-
10	Congested floor recognition (FI-CFR)		Identifies congested floors according to the usage data learned in each traffic flow mode.	-	-	-
11	Service forecasting for hall call assignment (FI-SFH)		This function assigns elevator cars to hall calls more precisely by forecasting the arrival time and number of passengers in the car according to the learning-based traffic demand.	-	-	-
12	Intelligent function	Generation of new traffic flow modes (FI-GNT)	Extracts new characteristics according to the learning-based usage data, and registers them as a building-specific new traficic flow mode.	-	-	-
13		Generation of optimum operation programs (FI-GOP)	Generates an optimum operation program for a building by simulating the elevator operation according to the usage data learned in each traffic mode and preferential control target.	-	-	-
14	Energy-saving preference control (FI-ESC)		This system reduces the number of elevator cars in service when traffic demand is low.	\bullet	-	-
15	Floor standbycontrol	Forecasting dynamic allocation control (FI-FDA)	Dynamically allocates elevator cars in response to continuously changing situations in the building by determining the area assigned to each car according to the forecasted number of passengers and car usage.	-	-	-
16		Zone distribution control (FI-ZD)	Distributes the idle elevator cars to the pre-assigned zones.	-	-	-
17		Fixed floor distribution control (FI-FD)	Distributes the idle elevator cars to the pre-assigned floors.	-	-	\bullet
18	Learning-based concentrated service (FI-LCS)		Centralizes the service to the learning-based congested floors during peak times including morning, lunch time and evening peaks while taking the service for other floors into account.	-	-	-
19	Automatic door open time control (FI-ADT)		This function automatically controls the duration of the door open time according to the floor and the kind of call (hall call or car call) as well as the elevator condition.	-	-	-

O Operating systems and functions

Depending on your requirements and the number of elevators in a group, customers can choose from a range of collective control systems, group control systems (including FI-series group control system) and operating systems. There are also basic and optional functions which you can choose from, depending on the building type and building requirements.

Safety functions
Legend STD: Standard

| No. | Name |
| :---: | :--- | :--- |
| 1 | Multi-beam door sensor(MBDS) |
| 2 | Door safety return system
 (ORS) |
| 3 | Interphone system(INPS) |
| 4 | Car emergency lighting(CEML) |
| 5 | Nearest landing
 operation(NLNO) |
| 6 | Overload detection
 system(OLDS) |
| 7 | Door safety edge (both sides or
 one side)(DSEB) |
| 8 | 3D door safety device(3DDS) |
| 9 | Abnormal speed protection
 function(ASPF) |
| 10 | Out of door-open zone alarm
 (ASOZ) |
| 11 | Overvoltage detection system,
 (OVDS) |
| 12 | Fire rated landing door |

12 Fire rated landing door

Description	STD	OPT
In the event that the beam paths are obstructed, this sensor, installed at the edge of the doors, will keep the doors open.	-	
In the event of door overload, such as when passengers get their fingers, hands or personal belongings caught in the door, this system automatically senses this and either re-closes or re-opens the doors to prevent injury.	-	
An interphone system is provided for emergency communication between the elevator and the master unit (in the supervisory panel, etc.).	-	
In the event of a power failure, an emergency light inside the elevator will be automatically activated.	-	
In the unlikely event of temporary trouble during operation, the elevator automatically goes to the nearest floor at a low speed and doors will open to prevent passengers from being trapped inside.	\bigcirc	
In the event of overloading, this system will activate an audio/ visual signal to prevent the elevator from moving.	-	
Mechanical safety units are installed on both sides or one side of the elevator doors. In the event of passengers coming into contact with the safety edges of closing doors, the doors will immediately reopen.		\bigcirc
This device detects passengers getting on or off the elevator, keeping the doors open as long as passengers are within the area of detection		-
In the event that the elevator is moving downwards at an abnormally high speed, the breakers will be automatically engaged and the elevator will cease operation.	-	
In the event that the elevator stops out of the door open zone of a selected floor, doors will not open, and an alarm will be sounded in the elevator.	-	
When an abnormal increase in power supply to the elevator system is detected, the power supply will be cut off to prevent damages to the elevator equipment.		-
2 hours fire rated landing door are available where required		\bullet

	Management func	ns Le	Legend	STD: Standard
No.	Name	Description	STD	OP
1	Automatic turn-off of elevator light and fan(ATFL)	In the event that the elevator is not in use, the light and ventilation fan in the elevator are automatically turned off to conserve energy.	-	
2	Maintenance operation(MTNO)	In the event that elevator maintenance is being carried out, the elevator operates at a lower speed.	-	
3	Parking operation(PKGO)	The elevator can be parked at the designated floor with a key switch.		-
4	Rush-hour schedule operation(RHSO)	All the elevators will automatically return to the start floor, after serving the last call during this preset rush-hour timing.		-
5	Floor lock-out operation(FLLO)	Specific service floors can be locked-out by activating a switch.		-
6	Floor lock-out operation by cipher code (ROCC)	By inputting a pre-programmed code using the car operating board floor buttons, passengers can gain access to certain restricted floors.		-
7	Intelligent operation security system (IPSS)	This function allows controlled access to certain floors by means of a password or ID cards. Note: Keypad or ID card-reader system is to be provided and installed by others. Interfacing shall be by means of dry (voltage-free) contacts.		-
8	Interfacing with closed-circuit TV (CCTV)	This system enables the security personnel to monitor the movement inside the elevator. This will be effective in preventing criminal and mischievous acts inside the elevator. (CCTV system, including wiring, is to be supplied by others.)		-
9	Supervisory panel(SVP)	This panel provides various supervisory operations, including communication and status monitoring.		-
10	Elevator monitoring system (EMS)	This system shows the real time situation of the elevators such as the elevator position, movement direction and abnormal operation on the PC (Personal Computer) display. It is also possible to turn on/off the elevators and change the service floors of the elevators using the PC.		\bullet
11	Interfacing to building management system (BMS)	This interfacing shall be done by means of electrical dry contact to the building management system for their monitoring.		\bigcirc
12	Regenerative system (RGNS)	When traveling downwards with a heavy car load or upwards with a light car load, the traction machine acts as a power generator to transmit power back to the electrical network in the building.		\bullet

§ Operating systems and functions

	mergency operat	ions Le	Legend	STD: Standard OPT: Optional
No.	Name	Description	STD	OPT
1	Earthquake emergency operation (EEMO)	In the event that an earthquake is detected, the elevator will stop at the nearest floor. (This function is not applicable to private lobby layouts.)		-
2	Fire emergency operation(FEMO)	In the event of fire, the elevator is automatically brought to the designated floor where it remains inoperative for passengers' safety.		-
3	Emergency operation for power failure (EPFO)	In the event of building power failure, the elevator can be operated by the building standby generator to move the elevator to the designated floor.		-
4	Automatic rescue device for power failure (ALP	In the event of building power failure, the elevator automatically switches to battery power to bring itself to the nearest floor. (This function is not applicable to private lobby layout buildings.)		-
5	Fireman operation(FMNO)	In the event that the fireman switch is turned on, the elevator returns to the designated floor and will be ready for firemen's use.		-

乞 List of designs and finishes

d Car designs

No.	Item		Finishes/ Designs/ Types	STD	OPT
1	Ceiling		CS-Series (CS-101S)	-	
2			DX-Series (DX-201S) (DX-12S) (DX-23S)		-
3			SL-Series / EX-Series (SL-102S) (EX-32S) (EX-403S)		-
4	Car Wall (3 sides)		Painted Sheet Steel	-	
$\begin{aligned} & 5 \\ & \hline 6 \end{aligned}$			Stainless Steel Hairline		\bullet
			Stainless Steel Non-directional Hairline		\bullet
7			Stainless Steel Hairline Etched (Hitachi Standard Pattern)		\bullet
8	Front Return Panel and Transom Panel		Stainless Steel Hairline	-	
$\begin{gathered} \hline 9 \\ \hline 10 \\ \hline \end{gathered}$			Stainless Steel Non-directional Hairline		-
			Stainless Steel Hairline Etched (Hitachi Standard Pattern)		\bullet
11			Stainless Steel Mirror		\bullet
12	Car Door		Stainless Steel Hairline	-	
$\begin{aligned} & 13 \\ & \hline 14 \end{aligned}$			Stainless Steel Non-directional Hairline		\bullet
			Stainless Steel Hairline Etched (Hitachi Standard Pattern)		\bullet
15			Stainless Steel Mirror		-
16	Kickplate (3	des)	Stainless Steel Hairline	-	
17	Sill		Extruded Hard Aluminum	\bullet	
18	Operating Panel	Position Indicator	Stainless Steel Hairline with TFT (LCD) Indicator (OPE-15B)	\bullet	
19			Stainless Steel Hairline with Dot Matrix Indicator (DHP-OP13)	-	
20			Stainless Steel Hairline with Dot Matrix Indicator (OPS)		-
21		Button	Stainless Steel Face Plate without Braille (UB15S-1) (UB15R-1)	-	
22			Stainless Steel Face Plate without Braille (UB15S-2) (UB15R-2)		-
23			Stainless Steel Face Plate with Braille (UB15S-3) (UB15R-3) (UB15S-4) (UB15R-4)		\bullet

List of designs and finishes

f Entrance designs

No.	Item		Finishes/ Designs/ Types		STD	OPT
1	Jamb Frame	Narrow Type (AS-1X)		Painted Sheet Steel	-	
2				Stainless Steel Hairline		-
3				Stainless Steel Non-directional Hairline		-
4				Stainless Steel Mirror		-
5		T-Wide Type	Without Transom Panel (TS-1X) With Transom Panel (TL-2X)	Painted Sheet Steel		\bullet
6				Stainless Steel Hairline		-
7				Stainless Steel Non-directional Hairline		\bullet
8				Stainless Steel Mirror		\bullet
9		S-Wide Type	Without Transom Panel (SS-1X) With Transom Panel (SL-2X)	Painted Sheet Steel		-
10				Stainless Steel Hairline		-
11				Stainless Steel Non-directional Hairline		-
12				Stainless Steel Mirror		\bullet
13	Sill	Extruded Hard Aluminum			\bullet	
14	Door	Painted Sheet Steel			-	
15		Stainless Steel Hairline				-
16		Stainless Steel Non-directional Hairline				\bullet
17		Stainless Steel Hairline Etched (Hitachi Standard Pattern)				-
18		Stainless Steel Mirror				-
19		Stainless Steel Mirror Etched (Hitachi Standard Pattern)				\bullet
20	Hall Button and Indicator (1)	Incorporated Type	Clip/Screw Type with TFT(LCD)	(VIB-15B) (VIB-15BD)	-	
21			Clip/Screw Type with Dot Matrix	(VIB-13B) (VIB-13BD)	-	
22		Button	Clip/Screw Type	(BL)		\bullet
23		Indicator	Clip/Screw Type with TFT(LCD)	(HF-15)		\bullet
24			Clip/Screw Type with Dot Matrix	(HSDX) (HLS-025SD)		-
25	Hall Button	Stainless Steel Surface Plate without Braille		(UB15S-1) (UB15R-1)	-	
26		Stainless Steel Surface Plate without Braille		(UB15S-2) (UB15R-2)		-
27		Stainless Steel Surface Plate with Braille		(UB15S-3) (UB15R-3) (UB15S-4) (UB15R-4)		\bullet
28	Hall Lantern	Vertical Type		(VLS-115S) (VLS-025S) (VLS-90S)		\bullet
29		Horizontal Type		(HLS-025S) (L-03)		\bullet
30				(HLS-025SD)		\bullet

1) Hall indicator is not recommended for group control system Fl-100 and FI-600

Research and development

One of the tallest elevator research tower. (Left: conceptual drawing) Hitachi plans to research and develop
the ultra-high speed $(1,000 \mathrm{~m} / \mathrm{min}$ and more) and large-capacity ($5,000 \mathrm{~kg}$ and more) elevators.

An integrated engineering system - from development
to design and production
 layout and various other design and production steps morer
quickly and efficiently.
Mito Works, Hitachi, Ltd. (Japan)

Mito Works, Urban Planning and Development Systems Company, Hitachi, Ltd. has acquired the certification of ISO14001 (Environmental Management System) and ISO90001 (Quality Management System).

Entrance details

(For two panel center opening door)

TS-1X type jamb (optional) Building structure (by other contractors) Wall and floor finishing (by other contractors) $\%$ Grouting (by other contractors)

Entrance details

Hoistway and machine room layout

Minimum machine room height \& hoisting hook capacity

No.	Rated load (kg)	Rated speed $(\mathrm{m} / \mathrm{min})$	Min. Machine room height $\mathrm{MH}(\mathrm{mm})$	Hoisting hook capacity (Ton)	
1	$450 \sim 700$	$60,90,105$	2100	3	
2	$750 \sim 1050$	$60,90,105$	2100	3	
		2450	4		
3		$60,90,105,120,150$	2450	4	
4	1150	$60,90,105,120,150$	2500	4	
5	$1350 \sim 1600$				

Minimum dimensions for overhead height, pit depth and other specifications

No.	$\begin{aligned} & \text { Rated load } \\ & (\mathrm{kg}) \end{aligned}$	Rated speed (m/min)	$\begin{gathered} \text { Travel } \\ (\mathrm{m}) \end{gathered}$	Overhead height (mm) ${ }^{(1)}$			$\begin{aligned} & \text { Pit depth } \\ & (\mathrm{mm}) \end{aligned}$	Maximum number of stops	Minimum floor to floor height (mm)
					EN81-1/Malaysia HKG COP	KFB			
1	450	60	Travel \leqq max. 60	4450	4450	4550	1500	16	2700
2	550~700	60	Travel \leqq max. 60	4450	4450	4550	1500	16	
3		90	Travel \leqq max. 100	4550	4550	4700	1600	32	
4		105		4600	4600	4750			
5	750~1050	60	Travel \leqq max. 60	4450	4450	4550	1500	16	
6		90	Travel \leqq max. 100	4550	4550	4700	1600	32	
7		105		4600	4600	4750			
8		120	Travel $\leqq 100$ 100 < Travel \leqq max. 140	5100	5050		$\begin{aligned} & 1900 \\ & 2050 \end{aligned}$	40	
9		150	Travel ≤ 100	5300	5250		2100		
		150	$100<$ Travel \leq max. 140	5300			2300		
10	1150~1350	60	Travel \leqq max. 60	4850			1650	16	
11		90	Travel \leqq max. 100	4950	49505100		1750	32	
12		105		5100			1850		
13		120	$\begin{gathered} \text { Travel } \leqq 100 \\ \hline 100<\text { Travel } \leqq \text { max. } 140 \\ \hline \end{gathered}$	5100	5050		$\begin{aligned} & 2050 \\ & 2300 \end{aligned}$	40	
		150	Travel $\leqq 100$	5350			$\begin{aligned} & 2300 \\ & 2500 \\ & 2500 \end{aligned}$		
14			$100<$ Travel \leq max. 140		5250				
15	1600	60	Travel \leqq max. 60	4850	4850		1750	16	
16		90	Travel \leqq max. 100	4950	5050		1850	32	
17		105		5100	5100		1950		
18		120	Travel ≤ 100	5100	5050		2050	40	
			100 <Travel \leq max. 140	5200	5100		2450		
19		150	Travel ≤ 100	5300			2250		
19			$100<$ Travel \leqq max. 140	5400	5300		2600		

HITACHI
 Inspire the Next

(6) Hitachi Elevator Asia Pte. Ltd.

10 Toh Guan Road East
Hitachi Elevator Building
Singapore 608597
Tel: (65) 64161711
http://www.hea.hitachi.com.sg

Distributor

Specifications and designs in this catalogue are subjected to change without notice.

Dimensions and reaction loading (for 1 elevator)

No.	Rated Ioad(kg)	Per-sons	$\begin{gathered} \text { Rated } \\ \text { Rep } \\ \text { sped } \\ (0 / m i n i m \end{gathered}$	Model	$\begin{gathered} \text { Door op } \\ \text { witdh } \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Car inside } \\ \hline \mathrm{axb}(\mathrm{~mm}) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Hoistway } \\ \hline \mathrm{X} \times \mathrm{Y}(\mathrm{~mm}) \\ \hline \end{array}$	Machine room		Machine room and pit reactionloading (kN1)				
								sxT (mm)	u	R1	R2	R3	R4	
1	450	6	60	VFF-450-CO60	1400×850 1400×1000		1850×1465	$\begin{aligned} & 2300 \times 2555 \\ & (2300 \times 2755) \end{aligned}$	255	43	25	72 (81)	63 (71)	
2	550	7	60	VFF-550-CO60			1850×1630	$\begin{aligned} & 2300 \times 2470 \\ & (2300 \times 2670) \end{aligned}$	120	46	27	80 (90)	69 (78)	
3			90	VFI-550-C090			1850×1680	$\begin{aligned} & 2400 \times 2420 \\ & (2400 \times 2620) \end{aligned}$	70	49	29	87 (90)	76 (79)	
4			105	VF1-550-CO105			87 (107)					76 (93)		
5	600	8	60	VFF-600-C060	800	1400×1050		1850×1700	$\begin{array}{\|l\|l} 2300 \times 2470 \\ (2300 \times 2670) \end{array}$	70	47	${ }^{28}$	83 (93)	71 (80)
6			90	VFI-600-CO90			1850×1750	$\begin{gathered} 2400 \times 2420 \\ (2400 \times 2620) \end{gathered}$	20	50	29	90 (93)	78 (81)	
7			105	VFI-600-C0105								90 (110)	78 (96)	
8	700	9	60	VFI-700-C060		1400×1200	1850×1850	$\begin{array}{\|c\|} \hline 2300 \times 2500 \\ (2300 \times 2700) \\ \hline \end{array}$	-	51	30	93 (105)	89 (96)	
9			90	VFI-700-CO90			1850×1900	$\begin{aligned} & 2400 \times 2500 \\ & (2400 \times 2700) \end{aligned}$	-	54	32	100 (103)	86 (89)	
10			105	VFI-700-C0105								100 (122)	86 (106)	
11	750	10	60	VFI-750-C060		1400×1300	1850×1950	$\begin{array}{\|c\|} \hline 2300 \times 2550 \\ (2300 \times 2750) \end{array}$	-	52	31	96 (108)	81 (91)	
12			90	VFI-750-CO90			1850×2000	$\begin{gathered} 2400 \times 2550 \\ (2400 \times 2750) \end{gathered}$	-	55	32	102 (106)	88 (93)	
13			105	VFI-750-CO105								102 (126)	88 (110)	
14			120	VFI-750-CO120										
15			150	VFI-750-C0150			1900×2060	2300×3400	-	105	61	155 (149)	134 (134)	
16	900	12	60	VFI-900-CO60	900	1600×1300	2050×2000	$\begin{array}{\|c\|} \hline 2550 \times 2750 \\ (2550 \times 2950) \\ \hline \end{array}$	-	57	33	109 (122)	91 (102)	
17			90	VFI-900-CO90			2100×2050	$\begin{gathered} 2650 \times 2750 \\ (2650 \times 2950) \end{gathered}$	-	61	36	115 (120)	98 (101)	
18			105	VFI-900-CO105								115 (142)	98 (120)	
19			120	VFI-900-CO120			2100×2060	2500×3400		108	64	159 (159)	138 (142)	
20			150	VFI-900-C0150										
21	1000	13	60	VFI-1000-C060	$\begin{gathered} 900 \\ {[1000]} \end{gathered}$	$\left[\begin{array}{l} 1600 \times 1450 \\ {[1600 \times 1400]} \end{array}\right.$	$\left[\left.\begin{array}{c} 2050 \times 2150 \\ {[2250 \times 2150]} \end{array} \right\rvert\,\right.$	$\begin{array}{\|c\|} \hline 2550 \times 2800 \\ (2550 \times 3000) \\ \hline \end{array}$	-	58 (59)	34 (35)	114 (128)	94 (105)	
22			90	VFI-1000-C090			$\left[\begin{array}{l} 2100 \times 2200 \\ {[250 \times 2200]} \\ \\ \hline 250 \times 200 \end{array}\right.$	$\begin{gathered} 2650 \times 2800 \\ (2650 \times 3000) \end{gathered}$	-	63	37	120 (125)	101 (104)	
23			105	VF-1000-C0105								120 (148)	101 (124)	
24			120	VF-1000-CO120			2100×2210	2500×3550	-	${ }^{110}$	67	165 (165)	142 (146)	
25			150	VFF-1000-CO150			[2250 $\times 2210]$	2500×3550				105 (165)	142 (146)	
26	1150	15	60	VFF-1150-C060		1600×1600	$\left[\begin{array}{l} 2090 \times 2260 \\ {[2250 \times 2260]} \end{array}\right.$	2450×3600	-	112	70	158 (192)	133 (169)	
27			90	VFF-1150-CO90			$\begin{aligned} & 2100 \times 2310 \\ & 2250 \times 2310] \end{aligned}$	2500×3650	-					
28			105	VF-1150-C0105										
29			120	VFF-1150-CO120	1000	1800×1450	2300×2210	2700×3550	-	120	73	188 (194)	162 (171)	
30			150	VF--1150-CO150										
31	1350	18	60	VFF-1350-C060	1100	2000×1500	2520×2210	2900×3500	-	120	75	172 (205)	144 (177)	
32			90	VFI-1350-Co90			2520×2210	2900×3550						
33			105	VFF-1350-CO105										
34			120	VFF-1350-CO120					-	125	78	198 (207)	169 (179)	
35			150	VFF-1350-CO150										
36	1600	21	60	VFI-1600-CO60	1100	2000×1700	2520×2410	2900×3750	-	125	80	205 (223)	171 (198)	
37			90	VF-1600-C090			2520×2460	2900×3800						
38			105	VFF-1600-CO105										
39			120	VFF-1600-CO120						131	83	213 (226)	179 (202)	
40			150	VFF-1600-CO150										

D'Dimensions and reaction loading (for 1 elevator)

Based on SS550 and Malaysia regulations (with fire rated door)

No.	$\begin{gathered} \text { Rated } \\ \text { Rod } \\ \text { (kad } \\ (\mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Per- } \\ & \text { sons } \end{aligned}$	$\begin{aligned} & \text { Rated } \\ & \text { speed } \\ & (\mathrm{m} / \mathrm{min}) \end{aligned}$	Model	$\begin{gathered} \text { Door op } \\ \text { width } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \hline \text { Car inside } \\ & \hline \mathrm{a} \times \mathrm{b}(\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { Hoistway } \\ \hline \mathrm{X} \times \mathrm{Y}(\mathrm{~mm}) \end{gathered}$	Machine room		Machine room and pitit reactionloading $($ kNi).			
								sxT (mm)	u	R1	R2	R3	R4
1	450	6	60	VFI-450-co60	800	1400×850	1850×1465	2300×2555	255	43	25	81	71
2	550	8	60	VFI-550-C060		1400×1030	1850×1630	2300×2440	90	46	27	90	78
3			90	VFI-550-C090			1850×1680	2400×2390	40	49	29	90	79
4			105	VFI-550-C0105								107	93
5	$\begin{gathered} 600 \\ (615) \end{gathered}$	9	60	VFI-600-CO60 (VFI-615-CO60)		1400×1150	1850×1750	2300×2450	-	47	28	93	80
6			90	$\begin{aligned} & \text { VFI-600-CO90 } \\ & \text { (VFI-615-CO90) } \end{aligned}$			1850×1800	2400×2450	-	50	29	93	81
7			105	VFI-600 CO105 (VFI-615-CO105)								110	96
8	700	10	60	VFI-700-CO60		1400×1250	1850×1850	2300×2500	-	51	30	105	89
9			90	VFI-700-CO90			1850×1900	2400×2500	-	54	32	103	89
10			105	VFI-700-C0105								122	106
11	750	11	60	VFI-750-CO60	$\begin{gathered} 900 \\ (800) \end{gathered}$	$\begin{aligned} & 1350 \times 1400 \\ & (1400 \times 1350) \end{aligned}$	$\begin{gathered} 2050 \times 2000 \\ (1850 \times 1950) \end{gathered}$	$\begin{aligned} & 2550 \times 2600 \\ & (2300 \times 2550) \end{aligned}$	-	52	31	108	94
12			90	VFI-750-CO90			2050 $\times 2050$	$\left(\begin{array}{l} 2650 \times 2600 \\ (2400 \times 2550) \end{array}\right.$		55	32	106	93
13			105	VFI-750-C0105								126	110
14			120	VFI-750-C0120			$\begin{aligned} & 2100 \times 2110 \\ & (1900 \times 2060) \end{aligned}$	$\begin{gathered} 2350 \times 3450 \\ (2300 \times 3400) \end{gathered}$	-	105	61	149	134
15			150	VFI-750-C0150									
16	900	13	60	VFI-900-CO60	900	1600×1400	2050×2050	2550×2800	-	57	33	122	102
17			90	VFI-900-CO90			2100×2100	2650×2800	-	61	36	120	101
18			105	VFI-900-C0105								142	120
19			120	VFI-900-CO120			2100×2110	2500×3450	-	108	64	159	142
20			150	VFI-900-C0150									
21	$\left\lvert\, \begin{gathered} 1000 \\ (1025) \end{gathered}\right.$	15	60	$\begin{aligned} & \text { VFI-1000-CO60 } \\ & \text { (VFI-1025-CO60) } \end{aligned}$		1600×1550	2050×2200	2550×2850	-	59	35	128	106
22			90	$\begin{aligned} & \text { VFI-1000-CO90 } \\ & \text { (VFI-1025-CO90) } \end{aligned}$			2100×2250	2650×2850	-	63	37	125	104
23			105	VFI-1000-CO105 (VF-1025-CO105)								148	124
24			120	VFI-1000-CO120 (VFF-1025-CO120)			2100×2260	2500×3600					
25			150	VFI-1000-CO150 (VFI-1025-CO150)			2100×2260	2500×3600		110	67	165	146
26	1150	17	60	VFF-1150-C060		1600×1700	2090×2360	2450×3700	-	112	70	155	101
27			90	VFF-1150-CO90			2100×2410	2500×3750	-			192	169
28			105	VFF-1150-CO105									
29			120	VFF-1150-CO120	1000	1800×1500	2300×2210	2700×3550	-	120	73	194	171
30			150	VFF-1150-CO150									
31	1350	20	60	VFF-1350-C060	1100	2000×1550	2520×2210	2900×3550	-	120	75	172	111
32			90	VFF-1350-C090			2520×2260	2900×3600				205	177
33			105	VF-1350-C0105									
34			120	VF-1350-CO120					-	125	78	207	179
35			150	VFl-1350-CO150									
36	1600	${ }^{23}$	60	VFF-1600-C060	1100	2000×1750	2520×2410	2900×3750	.	125	80	209	124
37			90	VF-1600-C090			2520×2460	2900×3800				223	198
38			105	VFF-1600-CO105									
39			120	VF-1600-CO120						131	83	226	202
40			150	VF-1600-CO150									

Dimensions and reaction loading (for 1 elevator)

	Rated load (kg)	Persons	$\begin{aligned} & \text { Rated } \\ & \text { speed } \\ & (\mathrm{m} / \mathrm{min}) \end{aligned}$	Model	$\begin{gathered} \text { Dor op op } \\ \text { widith } \\ (\mathrm{mm}) \end{gathered}$	Car inside$\mathrm{a} \times \mathrm{b}(\mathrm{~mm})$	$\begin{array}{\|c\|} \hline \text { Hoistway } \\ \hline \mathrm{XxY}(\mathrm{~mm}) \\ \hline \end{array}$	Machine room		Machine room and pit reactionloading (KN)			
								Sx T (mm)	u	R1	R2	R3	R4
1	450	6	60	VFI-450-CO60	800	1400×850	1780×1465	2300×2555	255	43	25	81	71
2	550	8	60	VFI-550-C060		1400 1400×1030	1780×1630	2300×2440	90	46	27	90	78
3			90	VFF-550-CO90			1850×1680	2400×2390	40	49	29	90	79
4			105 60	VFI-550-CO105			1780×1700	2300×2420	20	47	28	$\begin{aligned} & 107 \\ & 93 \end{aligned}$	93 80
6	600	9	90	VFI-600-CO90		1400×1100	1850×1750	2400×2400	.	50	29	93	81
			105	VFI-600-CO105			1850×1750	2400×2400				110	96
8	700	10	60	VFI-700-CO60		1400×1250	1780×1850	2300×2500	-	51	30	105	89
9			90	VFL-700-CO90			1850×1900	2400×2500	.	54	32	103	89
$\begin{aligned} & \frac{10}{11} \\ & \hline \end{aligned}$		11	$\begin{aligned} & 105 \\ & 60 \end{aligned}$	$\begin{aligned} & \text { VFI-700-CO105 } \\ & \hline \text { VFI-750-CO6060 } \end{aligned}$		1400×1350	1780×1950	2300×2550	.	52	31	122 108	106 94
12	750		90	VFI-750-CO90			1850×2000	2400×2550	.	55	32	106	93
13			105	VFI-750-CO105								126	110
$\begin{aligned} & \frac{14}{15} \\ & \hline \end{aligned}$			120	VFF-750-CO120			1900×2060	2300×3400	-	105	61	149	134
16	900	13	60	VFI-900-C060	900	1600×1350	2000×2000	2550×2750	-	57	33	122	102
17			90	VFF-900-CO90			2100×2050	2550×2750	-	61	36	120	101
18 19			105	VFI-900-CO105								142	120
20			150	VFI-900-CO150			2100×2060	2500×3400	-	108	64	159	142
21	1000	15	60	VFI-1000-CO60		1600×1500	2000×2150	2550×2800	.	59	35	128	106
22			90	VFF-1000-CO90			2100×2200	2650×2800	-	63	37	125	104
$\begin{array}{r}23 \\ \hline 24\end{array}$			$\frac{105}{120}$	VFF-1000-CO105								148	124
25			150	VFF-1000-CO150			2100×2210	2500×3550	-	110	67	165	146
26	1150	17	60	VF-1150-CO60		1600×1600	2090×2260	2450×3600	-	112	70	155	101
$\begin{aligned} & \frac{27}{28} \end{aligned}$			$\begin{aligned} & 90 \\ & 105 \end{aligned}$	VFF-1150-CO90			2100×2310	2500×3650	.			192	169
29			120	VFF-1150-CO120	1000	1800×1500	2300×2210	2700×3550		120	73	194	171
30 31			150 60	VFF-1150-CO150	1100	2000×1500	2520×2160	2900×3500	-	120	75	172	111
32	1350	20	90	VFI-1350-C090			2520×2210	2900×3550				205	171
$\begin{aligned} & 33 \\ & \hline 34 \\ & \hline \end{aligned}$			$\frac{105}{120}$	VFF-1350-CO105									
35			150	VFF-1350-CO150						125	78	207	179
36	1600	24	60	VFI-1600-CO60	1100	2000×1750	2520×2410	2900×3750	.	125	80	209	124
37			90	VFI-1600-C090			2520×2460	2900×3800				223	198
40			150	VFI-1600-CO150						131	83	226	202

乞Electrical Information

shows the works to be done by others.
Pit lightings, including wiring and piping, are to be provided by others ninimum 200 lux at floor level). Power socket outlet, including wiring and piping in pit, are to be provided by others.

and piping in pit, are	provided by others.	-0-00	
Item	Work to be provided by others		
	To install facilities to ensure that power does not fluctuate outside the range of -10% to $+5 \%$ of the normal voltage rating and to ensure that the unbalance factor of voltage does not exceed 5%.		
Main power supply ${ }^{(1)}$			
Lighting power supply ${ }^{(1)}$	To provide lighting power supply for car lighting indicators and maintenance work.	Master interohone ${ }^{\text {a }}$	
Interphone	To provide pipes and wiring located outside hoistway. To provide 12 interphone wires of $0.9 \mathrm{~mm}^{2} /$ elevator.		
Ventilation	To provide mechanical ventilation to the machine room to ensure that the temperature in the machine room is maintained at below $38^{\circ} \mathrm{C}$.	Pit light and switch	
Pit light, power outlet	To provide single-phase AC 200V, 10A power outlet and pit lighting with switch below the entrance floor level for maintenance purposes.		

Electrical data

Required capacity of circuit breaker, transformer and starting power at building side.

No.	Model	$\begin{gathered} \text { Rated } \\ \text { Road } \\ \text { (} \mathrm{kg} \text {) } \end{gathered}$	$\begin{aligned} & \text { Rated } \\ & \text { speed } \\ & (\mathrm{m} / \mathrm{min}) \end{aligned}$	Electrical data (For 1 elevalor unless specilies)							
				Motor	Main supply	Circuit breaker	Transformer capacity (kVA)			$\begin{aligned} & \text { Starting } \\ & \text { (kNer } \\ & \text { (kVAN unit) } \end{aligned}$	Calorificvalue for 1 if (kcal/ hr)
					(3-phasese) (V)	capacity	1 unit	2 units	3 units		
1	VFI-450-C060	450	60	4.5	$\xrightarrow{200-220}$30-480	${ }_{20}^{32}$	4	7	9	13	600
2	VF1-550-CO60	550	60	4.5		${ }_{20}^{32}$	5	7	10	14	734
3	VF1-550-C090		90	6.7	$\xrightarrow{2000220}$$380-480$	40 20	6	10	13	18	1100
4	VFF-550-C0105		105	7.8	${ }^{200} 2020$		6	11	15	20	1284
					$4400-480$	20					
5	$\begin{aligned} & \text { VFI-600-CO60 } \\ & \text { (VFF--150-CO60) } \\ & \text { VFF-600-COOO } \\ & \text { (VFF--150000) } \\ & \text { VFI-600-CO105 } \\ & \text { (VFI-615-CO105) } \end{aligned}$	5	60	4.5	(200-220	${ }_{20}^{40}$	5	8	11	15	(800)
6			90	6.7	${ }_{\substack{200-220 \\ 380-480}}$	${ }_{20}^{40}$	6	10	14	19	(1200)
7			105	7.8		${ }_{32}^{40}$	7	11	15	22	$\begin{gathered} 1400 \\ (1435) \end{gathered}$
8	VFI-700-C060	700	60	5.5	${ }^{23002020}$	${ }_{20}$	5	9	12	17	934
9	VFI-700-CO90		90	8.3		40 32	7	11	15	22	1400
					${ }^{400} 40480$	${ }_{50}^{20}$					
10	VFI-700-CO105		105	9.7	${ }^{3880-415}$	${ }_{40}^{40}$	8	13	17	24	1634
11	VFL-750-CO60	750	60	5.5	${ }^{200-415}$	40	6	9	12	17	1000
			90	8.3		50	7	12	16	23	1500
12	VFL-750-C090				${ }^{380-415}$ 440-480	${ }^{32}$					
13	VFI-750-CO105		105	9.7	${ }_{\substack{200-220 \\ 380-415}}^{2}$	50 40	8	13	18	26	1750
	VFF-750-C0120				${ }^{400-480}$	${ }_{63}^{32}$					
14			120	11		40 42	8	13	18	29	2000
15	VF-750-CO150		150	14		75 40	10	16	22	36	2500
16	VFI-900-C060	900	60	5.9	(200-220	40 20	6	10	14	20	1200
7	VF1-900-C090		90	8.9	200-220 $380-480$	50 32	8	14	19	26	1800
			105	10.4	(enc-200	63 40	8	14	19	30	2100
18	VF--900-C0105				${ }^{380-415} 4{ }^{30-480}$	${ }_{32}^{40}$					
19	VF--90-CO120		120	11.8	${ }_{\substack{200-220 \\ 380-480}}$	${ }_{40}^{63}$	9	15	21	33	2400
20	VF--90-CO150		150	14.7	(200-220	75 40	11	19	25	40	3000
21	VFF-1000-CO60	${ }_{\text {(1002 }}^{(1000}$	60	6.7	(200-220	${ }_{20}^{40}$	7	11	15	21	${ }_{(13864)}$
22	VF-1000-CO90		90	10.2	200-220 $380-480$	63 40	8	13	18	28	${ }^{2000}$
23	VFF-1000-CO105		105	11.7		${ }_{40}^{63}$	9	15	20	32	${ }_{(23394}^{2(239)}$
24	VFI-1000-CO120		120	14	$c200-220380-480$	75 40	10	17	${ }^{23}$	36	$\left.{ }_{(2667}^{2673}\right)$
25			150	17		75 50	12	20	28	44	3334)(3477)
	(VF1-1025-CO150)				380-415 $400-480$	50 40					
26	VFI-1150-C060	1150	60	7.5		50 32 32	7	12	16	${ }^{23}$	1534
27	VFI-1150-CO90		90	11.2	$200-220$	${ }_{63}$	9	15	20	32	2300
28	VEL-1150-CO105		105	13		${ }_{75}$	10	17	23	36	2684
					-						
29	VFI-1150-CO120		120	15	$\xrightarrow[\substack{200-220 \\ 380-480}]{ }$	75 40	11	19	25	41	3067
30	VFI-1150-CO150		150	18.5	${ }_{\substack{200-220 \\ 380-480}}$	100 50	14	${ }^{23}$	31	50	3834
31	VFl-1350-C060	350	60	9	$\underset{\substack{200-220 \\ 380-480}}{ }$	50 32	8	13	18	26	1800
32	VF-1350-C090		90	13	${ }_{\substack{200-220 \\ 380-480}}$	${ }_{40}^{75}$	10	17	${ }^{23}$	36	2700
33	VFI-1350-CO105		105	15	${ }_{\substack{200-202 \\ 380-415}}^{20}$	75 50	11	19	26	42	3150
					${ }^{4} 4000-480$	40 100					
34	VF-1350-CO120		120	17.5	${ }_{\text {380-415 }}^{20020}$	50	13	21	29	47	3600
	VFI-1350-CO150		150	22	${ }^{4000-420}$	${ }_{125}^{40}$					
35					$380-415$ $400-480$	${ }_{50}^{63}$	16	26	36	58	4500
	VFF-1600-CO60	500	60	10.5	${ }^{200-220}$	${ }^{63}$	8	14	19	30	2134
36					$380-415$ $400-480$	${ }_{30}^{40}$					
37	VFI-1600-CO90		90	15.5		75 50	12	19	26	42	3200
					400-480 $200-20$	40 100					
38	VFI-1600-CO105		105	18		50 40	13	22	30	48	3734
39	VFI-1600-CO120		120	21	${ }_{\substack{200-220 \\ 302015}}$	125	15	25	34	55	4267
39					${ }_{\substack{380-415 \\ 400-480}}$	63 50					
40	VFF-1600-CO150		150	26		${ }_{7}^{125}$	18	31	42	67	5334
					$440-480$	63					

Dimensions and reaction loading (for 1 elevator)

Based on Hitachi standard (without fire rated door)

D(Dimensions and reaction loading (for 1 elevator)

Based on India regulations (with fire rated door)

No.	$\begin{gathered} \text { Rated } \\ \text { Racd } \\ \text { (Kg) } \end{gathered}$	Persons	$\begin{aligned} & \text { Rated } \\ & \text { speed } \\ & (\mathrm{m} / \mathrm{sin}) \end{aligned}$	Model	$\begin{gathered} \text { Door op } \\ \begin{array}{c} \text { oidth } \\ \text { width } \\ (\mathrm{mm}) \end{array} \\ \hline \end{gathered}$	Car inside axb(mm)	$\begin{aligned} & \text { Hoistway } \\ & \hline \mathrm{X} \times \mathrm{Y}(\mathrm{~mm}) \end{aligned}$	Machine room		Machine room and pit reactionloading (kN)			
								Sx T (mm)	u	R1	R2	R3	R4
1	$480^{(1)}$	7	1.0 (60)	VFI-450-C060	800	1400×850	1850×1465	2300×2555	255	43	25	81	71
2	$550^{(+1)}$	8	1.0 (60)	VFI-550-C060		1400×1030	1850×1630	2300×2440	90	46	27	90	78
3			1.5 (90)	VFI-550-C090			1850×1680	2400×2390	40	49	29	90	79
4			1.75 (105)	VFI-550-CO105								107	93
5	$630^{(1)}$	9	1.0 (60)	VFI-630-C060		1400×1100	1850×1700	2300×2420	20	47	28	93	81
6			1.5 (90)	VFI-630-CO90			1850×1750	2400×2400	-	50	29	93	80
7			1.75 (105)	VFI-630-CO105								110	96
8	$700^{(4)}$	10	1.0 (60)	VFI-700-C060		1400×1250	1850×1850	2300×2500	-	51	30	105	89
9			1.5 (90)	VFI-700-C090			1850×1900	2400×2500	-	54	32	103	89
10			1.75 (105)	VFI-700-C0105								122	106
11	$750^{(+1)}$	11	1.0 (60)	VFI-750-C060		1400×1350	1850×1950	2300×2550	-	52	31	108	94
12			1.5 (90)	VFI-750-C090			1850×2000	2400×2550	-	55	32	106	93
13			1.75 (105)	VFI-750-CO105								126	110
14			2.0 (120)	VFI-750-CO120			1900×2060	2300×3400	-	105	61	149	134
15			2.5 (150)	VFI-750-C0150									
16	$900^{(7)}$	13	1.0 (60)	VFI-900-C060		1600×1350	2050×2000	2550×2750	-	57	33	122	102
17			1.5 (90)	VFI-900-C090			2100×2050	2650×2750	-	61	36	120	101
18			1.75 (105)	VFI-900-C0105								142	120
19			2.0 (120)	VFI-900-CO120								159	142
20			2.5 (150)	VFI-900-CO150			2100×2000	2500×3400					
21	$1050{ }^{(7)}$	15	1.0 (60)	VFI-1050-CO60	${ }^{900}$	1600×1500	2050×2150	2550×2800	-	59	35	128	106
22			1.5 (90)	VFI-1050-C090			2100×2200	2650×2800	-	${ }^{63}$	37	125	104
23			1.75 (105)	VFI-1050-CO105								148	124
24			2.0 (120)	VFI-1050-CO120			$2100 \times$	2500×3		110		165	146
25			2.5 (150)	VFI-1050-CO150			100×22	2500×3550					
26	1150	17	1.0 (60)	VFI-1150-CO60		1600×1600	2090×2260	2450×3600	-	112	70	155	101
27			1.5 (90)	VFI-1150-C090			2100×2310	2600×3650	-			192	169
28			1.75 (105)	VFI-1150-CO105									
29			2.0 (120)	VFl-1150-CO120	1000	1800×1500	2300×2210	2700×3550	-	120	73	194	171
30			2.5 (150)	VFI-1150-CO150									
31	$1350^{(1)}$	19	1.0 (60)	VFI-1350-CO60	1100	2000×1500	2520×2160	2900×3500	-	120	75	172	111
32			1.5 (90)	VFI-1350-CO90			2520×2210	2900×3550				205	177
33			1.75 (105)	VFl-1350-CO105									
34			2.0 (120)	VFl-1350-CO120					-	125	78	207	179
35			2.5 (150)	VFl-1350-CO150									
36	$1600^{(4)}$	23	1.0 (60)	VFI-1600-C060	1100	2000×1750	2520×2410	2900×3750	-	125	80	209	124
37			1.5 (90)	VFI-1600-CO90			2520×2460	2900×3800	.			223	198
38			1.75 (105)	VFl-1600-CO105									
39			2.0 (120)	VFI-1600-CO120					-	131	83	226	202
40			2.5 (150)	VFl-1600-CO150									

§Other Information

When building contractor provides the temporary void on the machine room floor for hoisting up elevator equipment, building contracto shall provide an additional suspension hook, positioned directly above the center of the void. (For details, please consult with Hitachi.)

§ Electrical Information

Wiring diagram
shows the works to be done by others
Pit lightings, including wiring and piping, are to be provided by others minimum 200 lux at floor level). Power socket outlet, including wiring and piping in pit, are to be provided by others.

Item	Work to be provided by others
Main power supply ${ }^{\text {(1) }}$	To install facilities to ensure that power does not fluctuate outside the range of -10% to $+5 \%$ of the normal voltage rating and to ensure that the unbalance factor of voltage does not exceed 5%.
Lighting power supply ${ }^{(11)}$	To provide lighting power supply for car lighting indicators and maintenance work.
Interphone	To provide pipes and wiring located outside hoistway. To provide 12 interphone wires of $0.9 \mathrm{~mm}^{2}$ / elevator.
Ventilation	To provide mechanical ventilation to the machine room to ensure that the temperature in the machine room is maintained at below $38^{\circ} \mathrm{C}$.
Pit light, power outlet	To provide single-phase AC 200V, 10A power outlet and pit lighting with switch below the entrance floor level for maintenance purposes.

Electrical data

Required capacity of circuit breaker, transformer and starting power at building side

: For India use only.

[^0]: DX-23S Ceiling design
 Center
 Both side
 Half mirror
 : Painted aluminum
 Ceiling trim with recess
 Lighting $\quad:$: Anodizescent aluminum
 Height (from floor) : 2300mm

